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Abstract. Several useful techniques are described for treating power series potentials. These
include: a moving row matrix nested multiplication method for constructing the Hamiltonian
matrix; a scaled folding algorithm to find the eigenvalues; and an energy shift method which gives
expectation values and eigencolumn elements. Two test problems are treated using the techniques;
in particular, it is found to be possible to treat a triple-well problem using only a simple single-
oscillator basis set.

In this paper, we describe several useful techniques which facilitate the use of the matrix
diagonalization approach to the Schrödinger equation for the case of a power series potential.
To the best of our knowledge, some of these techniques do not appear to have been reported
in the current literature on the subject. Applications to a single- and to a triple-well potential
produce several interesting results which can be reasonably well explained by the use of
arguments based on physical intuition. It is our intention not just to present some numerical
results, but also to set out the novel and useful features of the techniques in sufficient detail
to make them applicable by the many physicists who use matrix methods in their work.
Accordingly, we have set out in detail some of the vital steps which render the calculations
efficient.

1. Hamiltonian matrix construction

In a matrix diagonalization approach to the calculation of energy levels for the Schrödinger
equation, the first essential step is the calculation of the Hamiltonian matrix. If the basis states
used are the eigenfunctions of the harmonic oscillator Schrödinger equation

H0ψ = −d2ψ

dx2
+ β2x2ψ = Eψ (1)

then in principle, the matrix elements of xN are known analytically, but involve many square
root expressions for moderately highN values. As pointed out in [1], symbolic languages such
as MAPLE can produce the relevant formulae; nevertheless, a numerical substitution is needed
to obtain the actual matrix elements. In this work we stress the value of a direct numerical
construction of the matrix in situ by using matrix nested multiplication for the full polynomial
potential. Previous authors [1–3] have used matrix multiplication for the (slower) evaluation
of each individual xN term in the potential; [1] found that this approach is more reliable
numerically than the use of the explicit summation formulae of [4] for the xN matrix elements.
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Besides applying full matrix nested multiplication, this paper also explains clearly how to
overcome the important ‘edge effect’ (which is not mentioned by the cited works) and how
to find polynomial expectation values without the need for knowledge of any eigencolumns.
It also shows that it is even possible to find individual normed eigencolumn elements by a
procedure which uses only eigenvalue calculations.

We assume that the Schrödinger equation involves the Hamiltonian

H = H0 +
M∑

K=0

V (K)x2K (2)

whereH0 is the harmonic oscillator Hamiltonian in equation (1). We note that, in general, the
x2 term in the potential will need to be appropriately partitioned betweenH0 and the perturbing
potential if the potential is held fixed while the value of β2 in the basis set is varied. With
the potential written in the form appearing in equation (2), the matrix elements of H0 are the
traditional diagonal ones, namely

H0(J, J ) = (2N(J ) + 1) β (3)

where we introduce the indexing formula

N(J ) = 2J + P − 2 (4)

to map the matrix index J to the H0 state quantum number N(J ). The parity index P is 0
for even states and 1 for odd states. The diagonal matrix elements of H0 are added to the
H matrix after the matrix of the perturbing potential has been calculated by a matrix nested
multiplication procedure in which the matrix is built up step by step according to the rule

H(I + 1) = H(I) ∗X2 + V (M − I ) ∗ I (I = 0, . . . ,M) (5)

whereH(0) is the N ×N null matrix, I the N ×N unit matrix and X2 the tridiagonal matrix
of x2 (with elements given below). In applying equation (5) the detailed assignment statement
which gives the new elements at the first matrix multiplication stage

H := H ∗X2

is (with the usual convention of new values on the left, old values on the right)

H(J,K) := H(J,K) ∗ A +H(J,K + 1) ∗ B +H(J,K − 1) ∗ C (6)

where A, B and C are the standard oscillator matrix elements

A = (2β)−1 (2N(K) + 1)

B = (2β)−1
√
(N(K) + 2) (N(K) + 1)

C = (2β)−1
√
N(K) (N(K)− 1)

(7)

and N(K) is found by using the indexing formula of equation (4).
Inspection of equation (7) shows that the calculation of some of the matrix elements of

the N × N matrix H(I + 1) will require knowledge of elements of H(I) which are outside
the N × N matrix. Concentrating strictly on only the ‘inner’ elements during the nested
multiplication will thus give an ‘edge effect’ which produces incorrect matrix elements in a
rim around the sides of the H matrix. To remove this error the matrix is worked out one row
at a time, with the elements being held in a single temporary storage row T , so that H(J,K)
is put in the T (K) element. The row T can then be very long—quite sufficient to carry out an
exact calculation with K going well beyond the required matrix dimension N . The elements
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T (K) up to K = N are then copied into the row J of the H matrix and the working row T

is set to zero ready for the calculation of row J + 1. This row-by-row approach also has the
advantage that it is suitable for use with iterative matrix algorithms, e.g. [5], which compute
eigenvalues by using only one row at a time with repeated computation of the desired elements.

As is clear from equation (6), only the matrix elements of x2 are explicitly stated during
the calculation. For a potential with a rapidly converging power series, the above procedure
gives (except for rounding errors) the correct Hamiltonian matrix. The HEG method [6–8]
would treat the problem by first diagonalizing the x2 matrix in the oscillator basis and then
approximating the matrix of V (x2) by substituting V (x2

J ) at the diagonal position occupied by
the eigenvalue x2

J . This procedure leads to errors in the matrix which are difficult to quantify.
It also of course involves a preliminary diagonalizing transformation for the x2 matrix together
with a simultaneous transformation of the kinetic energy matrix, which is non-diagonal in the
oscillator basis. This paper gives some specimen calculations which indicate that the direct
route described here is effective for potentials comprising rapidly converging power series. The
calculation of the H matrix can clearly be carried out by a computer program which mainly
involves the repetition of appropriate loops. The initial V coefficients can be given as data or
can be produced by a separate subroutine which generates the power series V coefficients for
the required potential. We give results for one problem in each of these categories.

2. Scaled folding algorithm

It is clear that once the H matrix has been formed, the task of finding the eigenvalues and
eigencolumns can be carried out by any standard matrix technique. For the well spaced
eigenvalues of our test problems, it is sufficient to use the simple folding algorithm of
[9], which is essentially a Gaussian elimination method for working out the determinant
DET(E) = det(H − EI) and varying E to find the zeros of the determinant. The folding
algorithm has as its principal element the repetition of the ‘folding’ operation which can be
described by the assignment statements

C(J,K) := C(J,K)− C(J,M)C(M,K)/C(M,M) (8)

DET := DET × C(M − 1,M − 1). (9)

Here C is the ‘copy’ matrix formed by copying H into C and then subtracting E times the
unit matrix. At each step the (M − 1)× (M − 1) submatrix of C is overwritten according to
equation (8), as the indexM is reduced fromN down to 2. DET is initialized toC(N,N) and is
modified at each step by means of equation (9), reaching a final value which is the determinant
ofH −EI. A root-finding subroutine can be combined with this calculation to find the matrix
eigenvalues as the zeros of DET(E). If required, the eigencolumns can be obtained by inverse
iteration using a modification of the folding algorithm which includes two columns X and Y
and solves the equation system Y = (H − EI)X for X [9]. Although we did calculate some
eigencolumns (as reported below), we were also able to obtain much useful information by
using the eigenvalue perturbation technique described below.

One of the technical steps which we found necessary in using the folding algorithm is
of general value and so is briefly described here. For large matrices and for trial E values
which are far from an eigenvalue, the value of the product DET can become extremely large,
causing overflow problems during the computation. This difficulty is avoided by setting up a
row CS(J ) which stores the computed C(J, J ) on the first folding calculation and then uses
the normalized value C(M − 1,M − 1)/CS(M − 1) in the DET product of equation (9), but
not in equation (8). In particular, this scaling is done on the first run itself so that the initial
value of DET is effectively normalized to 1.
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We found that this procedure is adequate to keep the DET values within a moderate
numerical range as the trialE varies in the search for the zeros of DET . The interesting feature
emerged that this simple scaling of the factors in DET sufficed, without a more complicated
scaling of all the elements C(J,K) which appear in the intermediate stages of the C matrix
as it is gradually modified by the folding process. The folding algorithm has the advantage of
leaving unchanged the bandwidth of a matrix and hence is particularly rapid for matrices of
limited bandwidth, such as those associated with the second calculation reported in this work.

The first potential for which we show specimen results is the Gaussian potential

V = −100e−x2
(10)

which is represented by an alternating series in x2. Previous authors [2, 3] have given closed
expressions for the relevant matrix elements or lozenge-type recurrence relations for their
computation, but here we test the direct nested multiplication approach based on the coefficients
V (J ) of the exponential series. Our purpose is twofold, to test the technique and to exploit the
traditional bounding properties of alternating series.

Various considerations of a physical nature help to guide the computation and to interpret
the results. It is intuitively clear that the truncated series used is only required to give an accurate
representation of the potential function in the region where the wavefunction is of appreciable
magnitude for the particular state being considered. Also, if the number of terms taken is
always even, the actual potential used always has a discrete spectrum and provides an upper
bound to the true Gaussian potential. Since the eigenvalues of the H matrix are themselves
upper bounds to the exact bound state eigenvalues, it follows that we have a calculation which
must give upper bounds to the exact eigenvalues. In principle, there are three parameters
which should be varied: M , the upper index in the potential appearing in equation (2); N ,
the dimension of the matrix (i.e. the number of basis states); and β2. However, it is possible
to do a short preliminary calculation and decide on values of β2 and N which suffice to give
converged results in N for all the states to be treated.

For the Gaussian potential the higher states have rapidly increasing spatial extent. We
have therefore used a compromise β2 value of 40, rather than the value β2 = 100, which at
first sight appears appropriate for the very lowest states (since V = −100+100x2 −· · ·). With
fixed β2 and N , the calculation can then concentrate on studying the effect of increasing M .

Table 1 shows results for the lowest five levels of the Gaussian test potential. Table 2
displays the rate at which the upper bound descends to the exact eigenvalue asM is increased
for one eigenstate. Also shown are the results for oddM values, which give a sequence of lower
bounds to the energy. At first sight this lower bound property seems obvious, since the sum of
an odd number of terms gives a lower bound to the true potential. However, the series actually
represents a potential which ultimately diverges to −∞ and hence, in principle, has very narrow
resonances rather than true bound states. For such a potential our calculation should strictly

Table 1. Energy levels for the potential V = −100e−x2
with β2 = 40 and N = 60. The M value

shown is that required to give the displayed energy. The 〈x2〉 are also shown, along with β2
0 , the

effective value of β2 which corresponds to the actual 〈x2〉 value for each state.

E M 〈x2〉 β2
0

−90.376 398 798 077 16 0.0541 85
−71.916 893 344 509 20 0.1727 75
−55.080 167 079 855 24 0.3160 63
−39.974 972 170 785 32 0.4959 50
−26.746 369 362 935 46 0.7346 38
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Table 2. The third energy level for V = −100e−x2
as a function ofM , with β2 = 40 andN = 60.

All results start with the initial part −55.080 16 and only the next varying seven digits are shown
in the table.

M E M E

12 6231 758 13 7294 584
14 7028 774 15 7089 642
16 7076 167 17 7081 319
18 7079 539 19 7079 966
20 7079 824 21 7079 866
22 7079 852 23 7079 857
24 7079 855

speaking be regarded as a stabilization calculation in the spirit of the work by Hazi and Taylor
on resonance states [10]. It turns out, however, that the calculation is appropriate for this case,
since, before the potential represented by the truncated series descends, it reaches a maximum
which is so high compared with the eigenvalue studied that the tunnelling effects are virtually
negligible.

3. Energy shift method

In this case we obtain well converged results at a dimensionN = 60, but as would be expected,
we find that higher states with larger spatial extent need more terms in the V series to represent
the true potential. The value of 〈x2K〉 for K = 1, 2, . . . can be found by a simple method
which does not require the use of the eigencolumn and the matrix of x2. The eigenvalue is
recomputed with V (K) increased by a very small increment α; the energy change is then
α〈x2K〉 to first order of perturbation theory. By using a few α values together with Richardson
extrapolation, this approach can be refined to give 〈x2K〉 to very high accuracy, but even the
simple ‘single shift’ method gives satisfactory estimates that reveal the extent to which the
wavefunctions expand as the energy increases. It also provides a useful diagnostic tool for the
interpretation of the results of our second calculation.

This second calculation is the most interesting one selected from a set of triple-well
potential calculations. The sequence of even-parity potentials of the form

V = x6 − 20x4 + Ux2 (11)

exhibit three potential wells. For U = 100 the three wells all have their minimum at V = 0.
For U = 110 the outer wells have a minimum which is at about V = 97, while for U = 90
the outer wells have their minimum at about V = −102. For the case U = 90 which we
study, conventional wisdom might indicate that it is necessary to use a distributed basis set
which allocates a set of oscillator functions to each well to ensure a sufficiently rich set of basis
functions to describe those regions where on physical grounds we expect the wavefunction
to be large. Some authors [11, 12] use such an approach, which involves the use of non-
orthogonal basis functions. However, for a simple double-well potential it has been observed
that a single-oscillator basis centred on x = 0 can be chosen to give accurate double-well
levels [13, 14].

In table 3 we show results for the potential given in equation (10) with U = 90 and using
an oscillator basis which appears to be appropriate to describe only the levels in the central
well, i.e. with β2 = 90. As the dimension N is increased, the levels do at first appear to tend
towards such levels, with E > 0. However, as N is increased further through this region of



7004 J P Killingbeck et al

Table 3. Energies and 〈x2〉 values for low-lying states of the potential V = x6 − 20x4 + 90x2 with
β2 = 90 andN = 80. The centre of the deep outer pair of wells is at x2 ≈ 10.47. The parity even,
odd means that the even–odd splitting is too small to show up at this level of precision.

E 〈x2〉 Parity

−80.858 181 599 472 10.29 even, odd
−39.293 336 763 202 9.91 even, odd
−0.083 416 049 69 9.48 even, odd

9.315 165 356 793 0.055 even
27.583 821 595 213 0.169 odd
36.438 171 475 228 8.99 even
36.438 171 475 404 8.99 odd
45.093 481 756 703 0.294 even
61.760 180 906 442 0.434 odd
69.742 235 886 435 8.37 even
69.742 242 087 840 8.37 odd

‘quasi-convergence’, the correct spectrum of levels emerges, including the levels for which the
wavefunction is almost entirely concentrated in the outer wells and for which E < 0. Here
again we can invoke physical intuition to understand this apparently astonishing phenomenon.

The value of 〈x2〉 for an oscillator function with quantum number n is (n+ 1
2 )β. The matrix

diagonalization is essentially trying to form a linear combination of the oscillator functions
to construct the eigenfunction. We can regard the criteria involved to be the following: to
construct a low-lying eigenfunction we look for basis states with low energy and with a strong
amplitude in the correct region, so that the potential can mould the eigenfunction out of the
basis functions. For the present calculation these two requirements are to some extent in
opposition, since n has to be sufficiently high before the basis states in the outer well have
sufficient amplitude for the potential to be able to combine them correctly into the proper
eigenfunction. The consequence of these competing requirements is that, for example, the
ground state wavefunction is mainly formed from basis functions with n values in a ‘window’
between 40 and 60. Similar, but wider, windows occur for the first few excited states, but
with an extra feature, namely that within the window several basis functions have very small
amplitudes and their n values are symmetrically distributed within the window.

At present we have not found a conclusive theoretical explanation of this unexpected
phenomenon, but we suspect the presence of a ‘tuning’ effect, in which a set of the basis
functions have nodes near or at the centre of the outer wells and thus contribute weakly to the
required linear combination. The simple technique for finding 〈x2〉 is particularly valuable here.
It shows up with clarity which energy levels correspond to ‘inner’ and ‘outer’ wavefunctions.
Moreover, it is possible to extend the technique even further, to compute individual components
of the normalized eigencolumn. This is a feature which does not seem to have been pointed out
before, although it is analogous to the method of Boolean functions which we have developed
for finite-difference calculations [15].

If the element H(J,K) of the H matrix is increased by a small amount α, the resulting
change in the eigenvalue E will be given to first order by the expectation value of the
perturbation using the correct normalized eigencolumn, with elements A(J ). This is readily
seen to be the product αA(J )A(K) and thus leads to a product of eigencolumn elements. This
direct energy shift method to find such products can be extended, as adding α to the diagonal
element H(J, J ) will lead to the square of the normalized A(J ), while the total contribution
from the states in a band is found by shifting equally all the diagonals for that band. The use of
this technique confirmed the results concerning eigencolumns which we obtained by directly
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finding and normalizing the eigencolumns using inverse iteration via the folding algorithm.
This gives us additional confidence in the accuracy of our reported findings.

We note that although our calculation is evidently more complicated than the earlier
double-well calculations [13, 14], it does share with them the simplifying feature that separating
the even- and odd-parity calculations allows small energy-level splittings to be found from the
results of separate calculations, rather than by direct calculation. We note further that only
single or doubly degenerate levels appear in our calculated results. The even parity of V means
that the inner well even and odd functions will only combine with the single appropriate + or
− combination of the outer well functions, if we revert to the distributed basis picture, which
of course we have avoided in our calculations. The different curvatures of the inner and outer
wells render this mixing very small indeed, since they lead to ‘local’ oscillators with different
level spacings. The result is that the lowest even–odd pairs belong to the outer wells and are
degenerate to the accuracy quoted.

The interesting phenomena illustrated by these calculations and the way in which they
lend themselves to an interpretation based on semi-physical reasoning indicate that the method
of matrix construction applied here is a reliable technique for use with polynomial potentials.
In particular, we believe that the very small splittings for the triple-well problem would be
more difficult to compute and would require larger basis sets within the HEG formalism.

4. Concluding remarks

As reported above, our work contains several internal checks for consistency. Nevertheless, we
have used two types of external check to confirm our numerical results. First, we have applied
the finite-difference method of [16], which can handle even- and odd-parity states separately.
The results confirm those given in our tables for both E and 〈x2〉 for both potentials. For the
second test, we have applied the hypervirial perturbation approach [9, 17] to both potentials.
The values of E and 〈x2〉 for the Gaussian potential (table 1) have been confirmed to all the
quoted digits. For the second test potential, namely that of equation (10) with U = 90, some
particularly interesting results emerged. On physical grounds we would expect the lowest
levels to have wavefunctions which correspond closely to those for an isolated deep well.
Accordingly, we have carried out a perturbation calculation using the centre of the right-hand
deep well (at x ≈ 3.25) as the origin and with the appropriate local quadratic potential as the
unperturbed potential. The results give a dramatic confirmation of those in table 3. All the
energy levels found correspond to ‘outer’ levels as indicated by the 〈x2〉 values in table 3. The
lowest three levels agree exactly with those of table 3, to all the quoted digits. Although the
next two energies are not given to so many converged digits by the perturbation calculation,
they are obtained with sufficient accuracy to see that they are close to the average of the even-
and odd-parity levels obtained by the matrix diagonalization calculation.

Although the results given for the triple-well problem used a basis set with β2 = 90,
we did use several other choices of β2. The use of β2 < 90 permits the calculation of the
low-lying states with a basis of smaller dimension. Nevertheless, the lowest states still turn
out to be composed of basis functions with a band of high n values. The choice β2 = 90
illustrates most clearly the phenomenon of ‘artificial convergence’. The usual empirical test
in matrix calculations is to assume that convergence has been achieved when the lowest few
levels become stable to a high number of decimal digits. This stability is achieved in the triple-
well calculations, yet the physical shape of the potential function suggests that there ought
to be some states below the apparently stable ‘ground state’. Increasing the number of basis
states further does not affect the stability of the supposed ground state but leads to the gradual
emergence and stabilization of lower states which are associated with wavefunctions trapped
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in the deep outer wells. It then emerges that the original ‘ground state’ is, in fact, the seventh
true eigenvalue! If the x coordinate is scaled by a factor k, then the potential 90x2 − 20x4 + x6

becomes 90k4x2 −20k6x4 +k8x6, while the energy is multiplied by a factor k2. Since there is a
one-to-one mapping between the scaled and unscaled problems, the number of basis functions
needed to obtain convergence of the nth eigenvalue would not be affected if we took the basis
to have β2 = 90k4 to make it match perfectly to the physical shape of the inner well potential.

Two points emerging from the Gaussian potential calculations clearly merit further
investigation. First, the interpretation of the results for odd M values and the extent to which
they give useful lower bounds, in general, remains to be studied in more detail. Secondly,
although the results of table 2 take the M values right up to explicit convergence, the smooth
behaviour of the data strongly suggests that the limiting energy might be obtainable with less
effort by applying a Wynn algorithm [9] or some other summation approach to a sequence of
results for lowerM values. This would then make it possible to obtain results for some higher
states which would require very high M values to obtain explicit convergence.
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